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Advection in chaotically time-dependent open flows
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The passive advection of tracer particles is considered in open two-dimensional incompressible flows with
chaotic time dependence. As illustrative examples we investigate flows produced by chaotically moving ideal
point vortices. The advection problem can be seen as a chaotic scattering process in a chaotically driven
Hamiltonian system. Studying the motion of tracer ensembles, we present numerical evidence for the existence
of a bounded chaotic set containing infinitely many aperiodic trajectories never leaving the mixing region of
the flow. These ensembles converge to filamental patterns which, however, do not follow self-similar scaling.
Nevertheless, they possess a fractal dimension after averaging over several finite-time realizations of the flow.
We propose random maps as simple models of the phenomenon.@S1063-651X~98!11202-3#
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I. INTRODUCTION

The passive advection of tracer particles in tw
dimensional incompressible flows is a chaotic phenome
@1#. In such cases, the tracer dynamics turns out to be
preserving in the phase space which coincides with the p
of the flow and is thus directly observable. The advection
nonsteady flows is described by driven Hamiltonian dyna
ics. In the last decade, a comprehensive knowledge has
cumulated in the case of stricttime periodicityboth for flows
in closed containers@2–16# and for open flows with
asymptotic simplicity@17–30#, where the velocity field in the
far up and downstream region is uniform. A unique featu
of the latter sort of open flows is the pronounced and sta
fractal featureassociated with chaotic tracer dynamics. Th
is clearly measurable in laboratory experiments@31#. The
central object governing the tracer dynamics is a nonattr
ing chaotic saddle@32# containing an infinite number of pe
riodic and aperiodic bounded tracer orbits which never re
the far up or downstream region. The stable manifold rep
sents the saddle’s basin of attraction, and is a set of mea
zero. The unstable manifold leads tracers which have
proached the saddle in the far downstream region. Both
saddle and its stable and unstable manifolds are fractal
jects. Since the asymptotic dynamics is simple, the tra
motion can be considered as a scattering process with al
characteristics of a periodically driven one-degree-
freedomchaotic scattering@33#.

Our aim in this paper is to study how this picture chang
when the velocity field has achaotic time dependence. We
restrict ourselves to flows of asymptotic simplicity furth
on, which implies that the time dependence is relevant i
finite region of the plane only, in the so-calledmixing region.
Note that this does not mean at all that the flow would
turbulent here. In fact, we shall consider four-vortex pro
lems as illustrative examples. Nevertheless, we do hope
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by understanding such cases, we come a step closer to
understanding of what passive transport looks like in flo
exhibiting two-dimensional turbulence@34,35# in regimes of
finite extents. In the language of point mechanics, such tra
motions correspond to chaotic scattering processes gene
by chaotic temporal driving.

Studying the motion of tracer ensembles, we present
merical evidence for the existence of abounded chaotic se
containing trajectories never going out to the far upstream
downstream region. Although periodic orbits are atypical,
infinite number of aperiodic bounded orbits do belong to t
set which seems thus to be a direct generalization of a c
otic saddle. Local Lyapunov exponents on it are found to
strictly positive.

Technically, it is easier to follow escape-time functio
telling us how the time spent in the mixing region depen
on the tracers’ initial conditions~typically taken along a line
segment!. This distribution is found to be more irregular tha
in periodic flows, and is not consistent with the assumpt
of a single escape rate governing exponential decay stati
with a well-defined exponent. Nevertheless, arange of in-
stantaneous escape ratescan be found. The singularities o
the escape-time function belong to the intersection of the
of initial conditions with the stable manifold of the bounde
chaotic set. We shall call the stable manifold theforward
nonescaping foliation.

Tracer droplets rapidly evolve an interwoven,filamental
pattern along the unstable manifold of the bounded cha
set. It will be called thebackward nonescaping foliationbe-
cause this is the set of infinite escape times in the tim
reversed tracer dynamics. It cannot be distinguished by
naked eye from the fractal filaments of periodic flows.
closer observation, however, reveals that these foliati
need not follow exact fractal scaling: the fractal dimension
such filaments might depend on the length scale of obse
tion.

Since the chaotic time dependence of the flow is restric
to a finite region, its effect is similar to that of a bounde
random noise. Thus in the weak sense of random avera
the escape rate and the fractal dimension become w
2832 © 1998 The American Physical Society
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57 2833ADVECTION IN CHAOTICALLY TIME-DEPENDENT . . .
defined quantities. More generally, clear asymptotic cha
teristics are obtained by averaging over several finite-t
realizations of the chaotic flow.

As simple models of the phenomenon, we proposeopen
random mapswhere some features are more pronounc
than in the tracer dynamics. We show that the tracer dyn
ics has an asymptotic escape rate and a fractal dimensio
the sense of random averages@36,37,10#, provided that the
driving dynamics has reached a stationary probability dis
bution. Even if this is fulfilled, the convergence towards t
asymptotic values might be quite slow. The recently coin
concept of indecomposable continua@29# seems to be an
appropriate tool for describing the filamental patterns of
nonescaping foliations observed in chaotic flows.

The paper is organized as follows. In Sec. II we pres
four-vortex models generating the chaotic flows consider
Section III is devoted to the presentation of numerical res
obtained for the tracer motion. In Sec. IV explanatory the
retical models are discussed, and the paper is closed
short discussion~Sec. V!.

II. THE FOUR-VORTEX DYNAMICS

The equations of motion of interacting ideal point vortic
in incompressible two-dimensional flows can be written
the canonical form@38#

G i ẋi5
]H

]yi
, G i ẏi52

]H

]xi
, i 51,2, . . . ,N ~1!

where$xi ,yi% are the coordinates of vortexi of strengthG i .
The HamiltonianH appears in the form

H~$xi ,yi%!52
1

p (
i , j

G iG j ln r i , j , ~2!

with r i , j denoting the distance between vorticesi and j .
Our aim now, as explained above, is to investigate adv

tion in a velocity field produced by point vortices movin
chaotically. It can be easily shown that the minimal numb
of vortices necessary for chaotic dynamics is four@2,38#.

We are interested in advection in open flows where d
tant tracer particles can come close to the point-vortex s
tem along a simple path, exhibit complicated motion arou
it, and then leave this system along a simple trajectory ag
~asymptotic simplicity!. For such open flows the sum of th
vortex strengths has to be zero (( i 51

4 G i50). In this case the
streamlines far from the vortices are straight lines alo
which they can be approached.~For (G iÞ0 the streamlines
far from the vortices are closed curves.!

Perhaps the simplest flow of asymptotic simplicity is ge
erated by the so-calledleapfroggingmotion of two identical
point-vortex pairs~uG i u51, i 51, . . . ,4! @26#. However, due
to the special symmetry of the initial positions~x15x4 ,
x25x3 , y152y4 , andy252y3 , i.e., vortices 1 and 2 are
mirror images of vortices 3 and 4!, which is preserved by the
dynamics, the motion of the vortices is nonchaotic, but p
odic.

By considering another four-vortex system with the sa
set of vortex strengthsG15G251, G35G4521, but with-
out restricting the initial conditions to a symmetric one, w
c-
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obtain a locally chaotic and asymptotically steady open flow
The corresponding vortex trajectories are shown in Fig. 1~a!.
Unfortunately, this system is unstable in the sense that it c
disintegrate into two vortex pairs moving away in differen
directions. In other words, the chaotic vortex motion itself i
transient. This has been studied in great detail as a chao
scattering process of vortex pairs@39#. The time on which
the system breaks up in two pairs strongly depends, howev
on the initial conditions. Thus one can choose appropria
initial conditions to make this time long enough for a conve
nient investigation of the chaotic advection.

One can even prevent this breakup by changing the vort
strengths to keep the vortices close to each other forever. T
condition is that the system should not be decomposable in
subsystems of zero resulting vortex strengths. The simpl
case which satisfies this isG15G25G351 and G4523
@Fig. 1~b!#.

We shall consider these two chaotic four-vortex system
as illustrative examples of chaotically time-dependent op
flows with asymptotic simplicity. Typical vortex trajectories
are shown in Fig. 1. The common feature of both dynami
is that the four vortices move chaotically, do not depart from
each other, and move together along a line.~The latter is true
only for a finite period of time in the first example.! Thus the
motion of the vortices can be seen as a superposition o
straight translating motion and a chaotic relative motio

FIG. 1. Trajectories of four ideal vortices with vortex strength
~a! G15G251, G35G4521; and ~b! G15G25G351, G4523.
These dimensionless vortex strengths are measured in units oG,
the dimensional vorticity of vortex 1. The initial positions of the
vortices are ~a! x15x25x35x450, y150.3, y250.075,
y3520.07, y4520.2; and ~b! x15x25x35x450, y150.1,
y250.6, y351.0,y450.4. The length unitl is given in terms of the
initial coordinates asl 55uy4u and l 5uy3u in cases~a! and ~b!, re-
spectively. Trajectories are represented in dimensionless units. T
time the system requires to pass through frames~a! and ~b! is
t'0.688 andt'0.4, respectively. Trajectories over longer time
~t'4.9 andt'4.2! are shown in the insets. These dimensionles
times are given in units ofl 2/G. Note the asymptotic breakup of the
four-vortex system in two vortex pairs in case~a!.
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FIG. 2. Chaotic tracer trajectories in a chaotic flow. Trajectories are shown in a reference frame moving with the average vortex

(( i 51
4 ẋi)/4. @The flow is generated by the vortex dynamics shown in Fig. 1~b!.# The initial positions of the tracer particles are~a! x53.5,

y50.69 and~b! x53.5, y50.7 and the time spent in the mixing region is 0.45 and 1.635, respectively.
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which, in turn, produces a chaotic velocity field in a confin
region. From the point of view of particle dynamics, th
plays the role of the mixing region.

III. ADVECTION OF PASSIVE TRACERS

The dynamics of passively advected particles is de
mined by the underlying velocity field and is given by th
superposition of the circular velocity flows of single vortice
The streamfunctionc for a point-vortex system can be wri
ten in the form@38#

c~x,y,t !52(
i

G i

p
ln r i~ t !, ~3!

wherer i(t) stands for the distance of point (x,y) from vor-
tex i . The tracer equations of motion follow from the strea
function c as

ẋ5
]c~x,y,t !

]y
, ẏ52

]c~x,y,t !

]x
. ~4!

Note the Hamiltonian character of the dynamical system~4!.
The vortices generating the flow in our illustrative e

amples translate as a whole along a line. By introducin
comoving reference frame, we make the translation of
vortices disappear. In thiscomovingframe the velocity field
ensures that particles are advected towards the mixing re
and then leave it by moving away on asymptotically strai
lines. Thus the condition for an open flow with asympto
simplicity is fulfilled.

Similarly to periodic open flows, the advection of passi
tracers is a chaotic scattering process. Typical trajectorie
tracer particles in the comoving frame are shown in Fig.
As usual, the time spent in the mixing region, the esc
time, as well as the trajectory itself are sensitively depend
on the initial coordinates of the tracers.

Lyapunov exponents measured along orbits of long
cape times are clearly positive. The measurements have
carried out by starting a test particle with an initial conditi
close to that of a reference orbit~the initial distance is
d51025!. The test particle departs from the reference or
and whenever their distance becomes larger than a thres
value ~10d!, we shift it back to a distanced to the reference
orbit, along the line connecting the test and reference p
ticles. We counted the numbern of such replacements up t
time t ~in fact, this number is proportional to the logarithm
r-
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the total stretching rate! as a function oft. The average slope
~see Fig. 3! gives an estimate of the Lyapunov expone
along the reference trajectory.

We can also investigate the evolution of anensembleof
tracer particles simulating the evolution of a droplet of d
injected into the mixing region. Snapshots taken at differ
times ~Fig. 4! show that the ensemble tends to produce
complicated filamental structure characteristic to chaot
mixing and reminiscent to the ones observed in the cas
periodic open flows. The latter has been identified with
unstable manifold of the chaotic saddle existing in the m
ing region @22,23,26,27,29#. An important difference is,
however, that in contrast to the periodic generation of id
tical lobes, here the emerging patterns continuously cha
their form and size due to the chaotic motion of the vortic
driving the flow.

Using these tracer trajectories we can represent the es
time, the time spent in the mixing region, for each initi
condition ~Fig. 5!. We are particularly interested in the sin
gularities of the escape times, which mean trapping fo
large, theoretically infinite, time in the mixing region. Th
latter was chosen for numerical purposes as a box cent
initially at x5y50 and moving with the average velocity o
the vortex system (( i 51

4 ẋi)/4. The size of this box was
l x5 l y54 which is large enough to fulfill the condition tha
particles leaving it will never return to the mixing regio
again.

FIG. 3. Stretching numbern vs timet measured~see text! along
the trajectory shown in Fig. 2~b!. Dots and diamonds represent r
sults obtained for two different test particles started at differ
positions but at the same distance. The slope (;24) gives an esti-
mate of the Lyapunov exponent (24 ln 10'55). The saturation
aroundt51.6 is due to the escape from the mixing region.
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FIG. 4. Temporal evolution of an ensemble of 160.000 particles initially placed on a square grid of size 0.1 centered at~0,0.75!.
Snapshots are taken at~a! t50, ~b! t50.1,~c! t50.2,~d! t50.3,~e! t50.4, and~f! t50.5. After a time period oft50.5, there are still 66.869
particles in frame~f!. The vortex dynamics is the one shown in Fig. 1~b!.
nt
o

si
a

th
in
er
he
ha
ce

are
sted

es,
is-
les
ge-

n of
ard
all
Figure 5~a! shows that there are two qualitatively differe
sets of initial conditions leading to long escape times. One
them is characterized by compact disk shaped structures
ated around the vortices. The particles started in this set
trapped forever in thesevortex cores, and their trajectories
cannot be approached by particles coming from outside
cores. This kind of vortex cores is a generic feature of po
vortex dynamics, as was pointed out in different pap
@34,35,15,16#. The motion of the tracers is regular around t
chaotically moving vortex centers, being just a slaved c
otic motion with zero relative Lyapunov exponent. Sin
f
tu-
re

e
t-
s

-

particles cannot enter into these cores from outside, they
irrelevant for the chaotic scattering process we are intere
in.

The other set of initial conditions with large escape tim
on the contrary, has a complex filamental structure remin
cent of the fractal stable manifolds of the chaotic sadd
observed in the case of time-periodic flows. The enlar
ments@for an example see Fig. 5~b!# illustrate that the com-
plex patterns are present on all smaller scales. The motio
the particles on these filaments is restricted in the forw
dynamics to the mixing region forever. Therefore we sh
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FIG. 5. The time spent in the mixing region, the escape time, represented on gray scale as a function of the initial position of
tracers distributed uniformly in frame~a!. Brighter points correspond to larger escape times which are distributed in the interval@0.18,1.2#.
~b! Enlargement of a rectangular region of size 0.1 centered at~0,0.75!. ~c! Dots represent initial conditions whose escape time is larger t
1.2 in the forward dynamics, and thus form an approximant to the forward nonescaping foliation.~d! Dots represent initial positions whos
escape time is larger than 1.2 both in the forward and backward dynamics, and approximate the bounded chaotic set.
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call this set theforward nonescaping foliation.
One can also construct a similar set corresponding to

time-reversed tracer dynamics starting with the same se
initial conditions. Thisbackward nonescaping foliationwill
exhibit similar patterns.

The intersection of these two foliations has the prope
that trajectories starting from it never leave the mixing
gion either in the forward or in the backward dynamics. I
thus a natural generalization of the chaotic saddle introdu
in the periodic case, and we call it thebounded chaotic set.
The most important difference in comparison with perio
flows is that this chaotic set does not contain periodic or
since the driving flow has an inherently nonperiodic char
ter. It does contain, however, an infinite number of aperio
bounded orbits. Since nonescaping points in both temp
directions are rather exceptional, we believe that both
nonescaping foliations and the bounded chaotic set are
of zero measure.

We show in Fig. 5~c! the forward nonescaping foliatio
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obtained by plotting the initial conditions of Fig. 5~a!, whose
escape times are larger thant51.2. The filamental structur
is somewhat smeared out due to the low spatial density o
initial conditions considered. Since Eqs.~1! are invariant
against the transformationx→2x; t→2t, initial positions
which are invariant against the transformationx→2x lead
in the forward and backward dynamics to vortex trajecto
mirrored along thex50 axis. Obviously, this also holds fo
the advection dynamics. Thus in the case of Fig. 5 the b
ward nonescaping foliation is simply obtained by mirror
the forward nonescaping foliation against they axis. The
intersection of these foliations, the bounded chaotic se
shown in Fig. 5~d!.

There is another possibility for constructing the boun
chaotic set, namely, by monitoring the evolution of a ma
rial line placed in the mixing region. The algorithm is t
following: ~i! let the vortices move forward in time from
t50 to t1.0; ~ii ! select then a straight material~or dye!
line segment in the mixing region and let the vortices m
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FIG. 6. Approximating the forward and backward nonescaping foliations and their intersections by considering the advect
material line using the algorithm described in the text. The material line approaching the forward~backward! foliations „full line in ~a!, ~b!
@dashed line in~b!#… was att5t150.25 (t5t2520.25) a vertical line of length 1.5 centered at (61.345,0.75). The intersection of thes
lines is shown in~c!.
i

,

a

i

n
u
r

the
an

e
cay

gain a

sity

ixing
e left
arly
mo-

ong
den-

ling
gu-
the

, as
nt at
scal-

the
f Fig.
e

backward in time fromt1 to t50 along the same trajectory
Due to the chaotic dynamics, the line evolves to a comp
catedly winding curve around the vortices@Fig. 6~a!#. This
results in a rapid increase of the length, thus the numer
integration requires more and more interpolating poin
Therefore this numerical experiment can only be perform
for a relatively short period of timet1 . Nevertheless the
nonescaping points of the winding curve are expected to
proach the forward nonescaping foliation ast1→`. We can
obtain points on the other nonescaping foliation by perfor
ing the same procedure but changing the direction of time
~i! and~ii !, and replacingt1 by a t2,0. The intersection of
the two images of the advected material line converges
the advection timest1 and t2 go to infinity, to the bounded
chaotic set. For simplicity, we can exploit again the abo
mentioned symmetry of Eqs.~1!. Thus the patterns of the
material lines in the two cases are mirrored images of e
other against they axis. The intersection@Figs. 6~b! and
6~c!#, although obtained from a rather short time evolution
the material lines, shows a structure resembling a dou
Cantor set, and approximates the bounded chaotic set.

Although the measurement of Fig. 5 provides us with
nice picture of the distribution of escape times in space,
resolution is rather weak. To obtain a higher resolution of t
singularities, we followed tracer particles started along a l
segment among the vortices and measured the times the
ticles needed to leave the mixing region. Typical results
such escape-time functions are shown in Fig. 7. This fu
tion wildly fluctuates in some regions and has a fine struct
of singularities on all scales. This set of singularities cor
sponds to the intersection of the initial line segment with t
.
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forward nonescaping foliation.
For a quantitative characterization one can measure

decay of tracer particles in the mixing region. Start with
ensemble ofN0 particles and monitor the numberN(t) of
particles staying still inside after some long enough timt.
In the case of periodic flows there is an exponential de
N(t)/N0;exp(2kt) characterized by the escape ratek. In
our case the decay is found to be nonuniform~Fig. 8! which
means that the escape rate is time dependent. This is a
natural consequence of the chaotic driving of the flow.

One can also observe a nonuniformity of the point den
on the value of the escape time~cf. Fig. 7!. This can be
explained as an effect due to the sharp edge of the m
region. When a lobe of the droplet ensemble crosses th
edge, there are several initial conditions belonging to ne
the same value of the escape time. For periodic vortex
tions, the density differences follow a periodic pattern al
the escape-time axis, but now we find a rather irregular
sity oscillation.

The variation in escape rates implies a nonuniform sca
of the geometry as well. The fractal properties of the sin
larities of the escape-time function were investigated by
box-counting method. A typical result displayed in Fig. 9~a!
shows that the slope on the logN(«) vs log« plot is not
constant. No uniquely defined fractal dimension exists
can be expected from the variations of the driving prese
this scale. In other trials we also found rather accurate
ing from intermediate to small scales@see Fig. 9~b!#. This
can be viewed as an effect of the efficient mixing of
different modes present at different scales. The slopes o
9~b! and Fig. 8~b! ~0.95 and 1.3! give an estimate of th
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FIG. 7. Escape timest vs initial coordinatesy0 of 100.000 tracer particles. The vortex dynamics corresponds in~a! and ~b! to the one
represented in Fig. 1~a! and Fig. 1~b!, respectively. The particles were started on a vertical line segment centered at~0,0! ~a! and~0,0.75! ~b!.
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fractal dimension d'0.95 and escape rat
k'1.3 ln 10'3.0. This value of the fractal dimension is
good agreement with the formulad'12k/l'0.945 @40#.
~The average Lyapunov exponentl is approximated by the
slope of the curve presented in Fig. 3:l'55.!

IV. RANDOM BAKER MAP MODELS

Observing the motion of a particle advected by a chao
flow at timest5nt, i.e., at integer multiples of a time lagt,
defines a sequence of stroboscopic maps connecting th
ordinates att5nt with those att5(n11)t. In contrast to
periodic flows, when the map isn independent, it does de
pend now on the time at which the snapshot is taken. T
following a trajectory in discrete times requires the applic
tion of a sequence of different maps. The actual form
these maps is not known in generala priori. If, however, the
flow preserves some qualitative features~no drastic changes
in the flow structure!, the map can be assumed to be
element of a restricted class of maps. Such a class, e.g.
have a given type of dynamics in which only the paramet
aren dependent. For sufficiently complex chaotic flows a
not very short time lags, then dependence might be so i
regular that subsequent maps correspond to more or les
dependent choices. This means that on each iteraten, the
c

co-

s
-
f

an
s

in-

map ~or the set of its parameters! is randomly taken with
respect to a stationary distribution from an ensemble. S
random maps have originally been proposed to unders
surface advection generated by temporally chaotic flows
closed containers@36,37,41,42#. The tracer dynamics is the
not area conserving due to up and down welling. These m
turned out to be efficient models whose predictions can
compared with experimental observations@10,43#.

In the case of the flows investigated here, the preserva
of the qualitative features is ensured by the compactnes
the configuration of the four vortices maintained in a como
ing frame. Therefore the velocity field can be considered
any time as a distorted version of that of two leapfroggi
vortex pairs. The random appearance of the flow field can
viewed as a consequence of a projection from the hi
dimensional vortex phase space onto a number, the valu
the streamfunction at point (x,y), expressed by Eq.~3!
~where the phase space coordinates appear viar i ,
i 51, . . . , 4!. If the time lagt is of the order of the dimen-
sionless time unit, the series ofcn(x,y)[c(x,y,nt), or its
spatial derivatives which drive the advection process, can
well represented by a random sequence. The new featu
comparison with previous random map models is that we
studying now open incompressible flows, and therefore a
FIG. 8. The numberN(t) of particles with escape times larger thant represented as a function oft. ~a! and~b! correspond to Figs. 7~a!
and 7~b!, respectively. A rough estimate of an average escape rate can be read off from the average slopes ask'1.45 ln 1053.34 ~a! and
k'1.3 ln 1053.0 ~b!.
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57 2839ADVECTION IN CHAOTICALLY TIME-DEPENDENT . . .
preserving open random maps are needed with the possib
of escape.

In this class, perhaps, baker maps are the simplest
amples@32#. The simplest deterministic version acts on t
unit square by cutting it into two identical horizontal piece
These strips are squeezed horizontally and stretched v
cally so that they become rectangles of sizea31/(2a). They
are then overlapped with the original square by keeping
two corners fixed~Fig. 10!. A repetition of this procedure
leads aftern steps to 2n strips of widthsan inside the square
The squeezing and stretching rates in this process area and
1/a, respectively, independently of the construction step
the asymptotic limit this results in a set of fractal lines
dimensionD511d where the partial dimensiond is given
by d5 ln 2/ln(1/a). The escape rate characterizing the exp
nential decay of the total area of the strips inside the u
square is simply given byk52 ln(2a).

Let us now consider arandomgeneralization of this pro-
cess. We make the contraction rates fluctuating by choo
the squeezing rate in stepi to be ai5a1d i with d i as a
random variable in the rangeud i u<D with D,a fixed. We
assume that thed i ’s have astationarydistribution. The area
preservation implies that the expansion rate at stepi is
(ai)

21. After n steps, we then have 2n strips of widths
P i 51

n ai inside the square. Although the number of strips

FIG. 9. The numberN(«) of boxes of size« in a box-counting
algorithm applied to the set of the initial positions on the line s
ments shown in Fig. 7. whose escape times are longer than 0.~a!
and 1.4~b!, respectively. Two local slopes~d'0.7 andd'0.85!
can be read off in~a!, while in ~b! a well-defined slope gives a
estimate of the fractal dimension of the bounded chaotic set~as
d50.95!.
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the same as in the deterministic version~the topological en-
tropy is ln 2!, no exact self-similar scaling can be found
the length scales. A good numerical approximant to the ex
foliation is obtained aftern514 steps. The process illustrate
that an ensemble of particles~points on the unit square! sub-
jected to the same noise realization generates a nice folia
while individual trajectories would trace out a fuzzy patte
only.

By applying a box-counting method along the horizon
direction, one can find that the local slope fluctuates on
ln N(«) vs ln« plot. One can also plot the time dependen
of the total area of the strips inside the unit square~or num-
ber of particlesNn! on a logarithmic-linear scale. Fluctua
tions of the local slope of the lnNn vs n curve appear again
as an effect of the randomness~cf. Figs. 11, 12!. Here we
illustrate, by elementary arguments, that although the fl

-

FIG. 10. Schematic representation of an open baker map~see
text!.

FIG. 11. The total numberNn of particles ~inside the unit
square! starting with a uniform distribution ofN0 particles~which is
proportional to the total area of the strips! as a function of timen.
nmax514 steps were performed withai5a1d i wherea50.25 and
d i is uniformly distributed in the interval@20.2,0.2#. The results
for three different realizations are shown. A well-defined slope w
arise after averaging over a great number of realizations.



en
e
se

a

s

e

e
ra
th
v

te

n

us
nc

f
r

f
e

the
-

ts is

ar-

-
po-

mo-
ing
e
ult-
n
e
tion

a

e

ot
n of
tal

-
m-
lues
ell-
en

et
-

as

2840 57Z. NEUFELD AND T. TÉL
tuations are large, a well-defined asymptotic fractal dim
sion d and escape ratek exists. This is an extension of th
results obtained for the attractors of dissipative and clo
random maps@36,37,10#.

Let us first investigate the escape rate. We introduce
instantaneous escape rate ask i52 ln(2ai) corresponding to
the i th iteration. This would be the value ofk if ai were
independent ofi . We define the asymptotic escape rate a

k52 lim
n→`

ln~Nn /N0!

n
,

whereNn is the number of particles on the square aftern
steps when starting with a uniform distribution ofN0 par-
ticles. SinceNn /N052nP i 51

n ai , the average slope of th
ln Nn vs n curve can be written as@2( i 51

n ln(2ai)#/n. Note
that forn→` this yieldsk5^k i&, that is, the average escap
rate is simply the average of the instantaneous escape
~cf. Fig. 11!. Note that the average can also be taken over
random process; brackets will be used to denote such a
ages. Finally we obtain

k5^k i&52 ln 22^ ln ai&,

i.e., the average of the contraction rates’ logarithm de
mines the escape rate.

The situation is somewhat different for the fractal dime
sion defined as

d52 lim
«→0

ln N~«!

ln «
,

whereN(«) is the number of boxes of size« needed to cover
the projection of the foliation on the horizontal axis. Let
consider a box-counting algorithm by choosing a seque
of box sizes«n , n51,2, . . . coinciding with the width of the
strips aftern iterations:«n5P i 51

n ai . Since the number o
strips is increased by a factor of 2 in each step, the numbe
nonempty boxes is 2n in step n. Thus we obtain a set o
points on the lnN vs ln« plot which are equidistant along th

FIG. 12. NumberN(«) of boxes of size« needed to cover the
projection on the horizontal axis of the strips obtained by a rep
tion of the random baker map afternmax514 steps, for three real
izations of the random sequenced i . A well-defined slope will arise
after averaging over a great number of realizations. Parameters
Fig. 11.
-
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vertical direction. The distance between them along
y5 ln N(«) axis isDyi5 ln10 2[Dy. These jumps are, how
ever, distributed unevenly~Fig. 12! along the horizontal
x5 ln « axis where the distance between successive poin
Dxi5 ln(1/ai). The resulting slope of the lnN vs ln« curve
is ( i 51

n Dyi /( i 51
n Dxi from which

1

d
5 lim

n→`

1

n (
i 51

n
Dxi

Dy
5 lim

n→`

1

n (
ln~1/ai !

ln 2
5 K 1

di
L

52
^ ln ai&

ln 2
.

This shows that the fractal dimension is equal to the h
monic mean of the local dimensions,di5 ln 2/ln(1/ai),
which would be the global dimension ifai was kept inde-
pendent ofi .

By taking into account that2^ ln ai& is the average loga
rithm of the stretching rate, i.e., the average Lyapunov ex
nent, we find thatd512k/l holds in this case exactly.

These results can be generalized for the case of nonho
geneous random baker maps having two different stretch
ratesai andbi for the two halves of the unit square. In th
deterministic case the partial fractal dimension of the res
ing nonuniform fractal is given by the implicit equatio
ad1bd51 @44–46#. If a and b are random variables, on
can obtain a successively better and better approxima
to the random map’s average behavior by applying
sequence of random parameters of lengthk:
(a1 ,b1),(a2 ,b2), . . . ,(ak ,bk), and repeating this sequenc
periodically up to infinity. Afterk52 applications of the
random map, the widths of the four strips area1a2 , a1b2 ,
b1a2 , andb1b2 . The escape ratek2 over this short period
is k25(1/2)ln(a1a21a1b21b1a21b1b2)5(1/2)@ ln(a11b1)
1ln(a21b2)#. The periodic repetition of this action does n
change the escape rate at all, and leads to the constructio
a four-scale Cantor set along the horizontal axis. Its frac
dimension is known to be given by the equation@44#
(a1a2)d21(a1b2)d21(b1a2)d21(b1b2)d251 which can be
rewritten as (a1

d21b1
d2)(a2

d21b2
d2)51. Similarly, for a peri-

odic application of a random sequence of lengthk we find
the escape ratekk and partial fractal dimensiondk as
kk5(1/k)( i 51

k ln(ai1bi), and P i 51
k (ai

dk1bi
dk)51, respec-

tively. The latter can also be written as( i 51
k ln(ai

dk1bi
dk)50.

In the limit k→` we obtain the escape ratek and partial
fractal dimensiond of the random map as

k5^ ln~ai1bi !&

and

^ ln~ai
d1bi

d!&50,

respectively. Since the orderk approximants contain alge
braic means of certain combinations of the random para
eters, the asymptotic expression appears as mean va
taken over the noise realizations. We see again that w
defined dynamical and fractal characteristics exist in op
random maps.
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The above results can be obtained in a more general
ting by using the partition function formalism@37#. In this
way, the entire spectrum of the unstable foliation’s gene
ized dimensions@44,45# can also be determined.

V. DISCUSSION

First, let us discuss the relation of the random map
proach to chaotically driven advection. We have seen
open random maps possess well-defined asymptotic es
rates and, in spite of their Hamiltonian or area preserv
character, also fractal dimensions. The examples cle
demonstrate, however, the difference between the deter
istic and random versions. While the exact results for us
baker maps can be read off after one step already, they
pear as statistical averages with a 1/n type of convergence in
random baker maps. This difference remains of course
nounced in more general maps, too, in the form of a m
slower convergence in the random version than in the de
ministic one.

The effect of noise and chaotic driving is expected to
similar for the properties we are studying. Some differen
of course can be pointed out with suitable tailored time se
analysis methods@47# but this is not of primary interest fo
us in this paper. We can state that the escaping process
the tracer foliations in chaotically driven flows are of simil
character as in open random~Hamiltonian! maps. This ex-
plains the rather large fluctuations of the time decay found
the preceding section since the time interval studied th
was yet too short to cover a sampling period where a w
defined average for the escape rate could be obtained.
range of« used in the box-counting algorithm was mu
broader, which supports the better scaling found in
ln N(«) vs « plots.

We do not claim that the simple random baker map st
ied in Sec. IV would be an appropriate model of advection
the field of chaotically moving vortices in a quantitativ
sense. Our aim was to show that the existence of
asymptotic escape rate or a fractal dimension is also pre
in open random maps. Therefore we believe that in su
ciently chaotic flows the long term tracer dynamics can
well modeled by random maps. To find their particular fo
seems to be rather difficult in practice. Nevertheless, th
mere existence is important since it ensures the validity
Kaplan-Yorke type formulas@48# ~such as, e.g., a relatio
d512k/l connecting fractality with escape rate an
Lyapunov exponent! which can be checked in future exper
ments ~for surface flows in closed domains this has be
done in@10#!.

There might also be deviations observed from the rand
map representation. A central assumption has been of co
the stationarity of the random process. Since the mixing
gion is finite, we can assume that such a stationary distr
tion of the chaotic driving exists and sets in after a fin
time. In a particular observation, however, we cannot be s
that the stationarity has already been reached. If this is
the case, no well-defined characteristics can exist, not e
et-

l-

-
at
pe

g
ly
in-
al
p-

o-
h
r-

e
s
s

nd

in
re
l-
he

e

-
n

n
nt
-
e

ir
f

n

m
rse
-

u-

re
ot
en

in the weak sense of random averages. The crossover
tween two more or less linear scaling regimes arou
log10 «'22.5 in Fig. 9~a! can be viewed as a consequen
of nonstationarity. The vortex trajectories show the succ
sion of two different but more or less periodic vortex m
tions on the time scales which are relevant for this meas
ment. The crossover takes place aroundx'6.5 in Fig. 1~a!.
Thus the two scaling regimes in spatial scales can be con
ered as fingerprints of these two temporal dynamics.

Recently, the concept of indecomposable continua@29#
was introduced and suggested as a useful tool for descri
passive advection in open flows. Roughly speaking, an in
composable continuum is a complicated line that falls into
infinite number of pieces when being cut through by
straight line. This topological property does not imply frac
scaling at all but ensures a geometrical appearance re
bling that of fractal manifolds. The forward and backwa
nonescaping foliations defined in the paper are example
indecomposable continua. As pointed out, they really do
follow strict fractal scaling but might be characterized
well-defined asymptotic fractal dimensions and escape r
in the sense of open random maps.

Note added:After the submission of this manuscript, w
became aware of other recent independent approa
@49–53# devoted to understanding advection in aperio
flows. In @49# temporally irregular flows are considered. Th
difference with our paper is that the advection problem
vestigated is represented there from the very beginning in
form of a random map. Nevertheless the existence of a
ward ~backward! foliation and a bounded chaotic set~which
are called entrainment, pre-entrainment, and intermediate
trainment sets, respectively! is shown, and the correspondin
plots of these sets are qualitatively similar to those presen
here. The conclusions concerning fractal properties is a
similar. Reference@49# contains a detailed study on mult
fractality, too. Papers@50–53# deal with flows of general
time dependence. Rigorous mathematical conditions
worked out for the existence of hyperbolic structures a
chaotic sets. In@51# the technique of lobe dynamics an
Melnikov’s method are generalized for aperiodic flows.
systems with chaotic advection, the above methods and
random map approach seem to be complementary: they
vide tools for understanding the short and long time beh
ior, respectively.
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@27# Á. Péntek, Z. Toroczkai, T. Te´l, C. Grebogi, and J. A. Yorke
Phys. Rev. E51, 4076~1995!.

@28# J. Kennedy and J. A. Yorke, ‘‘The topology of stirred fluids,
University of Maryland report, 1995.

@29# M. A. Sanjuan, J. Kennedy, C. Grebogy, and J. A. York
Chaos7, 125~1997!; M. A. Sanjuan, J. Kennedy, E. Ott, and
,

.

-

-

-

,

-

,

A. Yorke, Phys. Rev. Lett.78, 1892~1997!.
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~1993!; Z. Kovács and L. Wiesenfeld, Phys. Rev. E51, 5476
~1995!.

@34# D. Elhmaidi, A. Provenzale, and A. Babiano, J. Fluid Mec
257, 533 ~1993!; A. Provenzale, A. Babiano, and B. Villone
Chaos Solitons Fractals5, 2055~1995!.

@35# A. Babiano, G. Boffetta, A. Provenzale, and A. Vulpiani, Phy
Fluids 6, 2465 ~1994!; F. Paparellaet al., J. Geophys. Res
102, 6765~1997!.

@36# E. Ott and T. M. Antonsen, Phys. Rev. Lett.61, 2839~1988!;
Phys. Rev. A39, 3660~1989!.

@37# F. Romeiras, C. Grebogi, and E. Ott, Phys. Rev. A41, 784
~1990!.

@38# P. G. Saffman,Vortex Dynamics~Cambridge University Press
Cambridge, England, 1992!.

@39# B. Eckhardt and H. Aref, Philos. Trans. R. Soc. London, S
A 326, 655~1988!; B. Eckhardt, Europhys. Lett.5, 107~1988!.

@40# H. Kantz and P. Grassberger, Physica D17, 75 ~1985!.
@41# L. Yu, E. Ott, and Q. Chen, Phys. Rev. Lett.65, 2935~1990!;

Physica D53, 102 ~1991!.
@42# A. Namenson, T. M. Antonsen, and E. Ott, Phys. Fluids8,

2426 ~1996!.
@43# J. C. Sommerer, Phys. Fluids8, 2441~1996!.
@44# P. Grassberger and I. Procaccia, Physica D13, 34 ~1984!.
@45# T. C. Halseyet al., Phys. Rev. A33, 1141~1986!.
@46# T. Vicsek,Fractal Growth Phenomena~World Scientific, Sin-

gapore, 1992!.
@47# J. Graf von Hardenberg, F. Paparella, N. Platt, A. Provenz

E. A. Spiegel, and C. Tresser, Phys. Rev. E54, 394 ~1997!. J.
Graf von Hardenberg, F. Paparella, A. Provenzale, and E
Spiegel, inNonlinear Signal and Image Analysis, edited by F.
R. Buchler and H. Kandrup~New York Academy of Science
New York, 1997!.

@48# F. Ledrappier and L. S. Young, Ann. Math.122, 540 ~1985!.
@49# J. Jacobs, E. Ott, and T. Antonsen, ‘‘Fractal entrainment s

of tracers advected by chastically temporally irregular flu
flows,’’ University of Maryland report, 1977.

@50# S. Wiggins, ‘‘Chaos in the dynamics generated by sequen
of maps, with applications to chaotic advection in flows wi
aperiodic time dependence,’’ California Institute of Techno
ogy, Pasadena report.

@51# N. Malhotra and S. Wiggins, ‘‘Geometric structures, lobe d
namics, and Lagrangian transport in flows with applications
Rossby wave flow, California Institute of Technology, Pas
dena report, 1997.

@52# P. D. Miller, C. K. R. T. Jones, A. M. Rogerson, and L.
Pratt, ‘‘Quantifying transport in numerically generated velo
ity fields,’’ Brown University report, 1997.

@53# G. Haller and A. C. Poje, ‘‘Finite time transport in adeniod
flows,’’ Brown University report, 1977.


